Struktur utama Algebra linear

Struktur utama algebra linear ialah ruang vektor dan peta linear di antaranya. Ruang vektor ialah satu set yang elemen-elemennya boleh ditambah bersama dan didarab dengan skalar atau nombor. Dalam kebanyakan aplikasi fizikal, skalar adalah nombor nyata, R. Secara lebih umum, skalar boleh membentuk sebarang medan F- jadi, ruang vektor dianggap melalui medan nombor rasional Q, medan nombor kompleks C, atau medan terhingga Fq. Kedua-dua operasi ini mesti bertindak serupa dengan penambahan dan pendaraban nombor biasa: penambahan adalah kalis tukar tertib dan kalis sekutuan, pendaraban adalah kalis agihan ke atas penambahan, dan seterusnya. Dalam erti kata lain, kedua-dua operasi mesti memenuhi senarai aksiom yang dipilih untuk menyamai sifat penambahan dan pendaraban skalar vektor Euclid dalam koordinat ruang-n Rn. Salah satu aksiom tersebut menentukan kewujudan vektor sifar, yang bertindak sama seperti nombor sifar dalam penambahan. Elemen-elemen ruang vektor umum V boleh menjadi sebarang bentuk objek, contohnya fungsi atau polinomial, tetapi apabila ia dilihat sebagai elemen dalam V, ia sering dipanggil vektor.

Diberi dua ruang vektor V dan W di medan F, transformasi linear ialah satu peta

T : V → W {\displaystyle T:V\to W}

yang serasi dengan penambahan dan pendaraban skalar:

T ( u + v ) = T ( u ) + T ( v ) , T ( r v ) = r T ( v ) {\displaystyle T(u+v)=T(u)+T(v),\quad T(rv)=rT(v)}

untuk sebarang vektor u,v ∈ V dan skalar r ∈ F.

Peranan asas dalam algebra linear dimainkan oleh tanggapan kombinasi linear, rentangan, ketakbersandaran linear vektor serta asas dan dimesi ruang vektor. Diberi ruang vektor V di medan F, satu ungkapan untuk bentuk

r 1 v 1 + r 2 v 2 + ⋯ + r k v k , {\displaystyle r_{1}v_{1}+r_{2}v_{2}+\cdots +r_{k}v_{k},\,}

di mana v1, v2, …, vk adalah vektor danr1, r2, …, rk adalah skalar, dikenali sebagai kombinasi linear vektor-vektor v1, v2, …, vk dengan pekali r1, r2, …, rk. Set untuk semua kombinasi linear vektor-vektor v1, v2, …, vk dipanggil sebagai rentangannya. Kombinasi linear bagi sebarang sistem vektor dengan semua pekali sifar ialah vektor sifar V. Jika ini adalah satu-satunya cara untuk mengungkap vektor sifar sebagai kombinasi linear v1, v2, …, vk, maka vektor-vektor ini adalah tak bersandaran secara linear. Set vektor yang tak bersandaran secara linear yang merangkumi satu ruang vektor V ialah asas bagi V. Jika satu ruang vektor menyetujui asas terhingga maka sebarang dua asas memiliki jumlah elemen yang sama (dipanggil dimensi V) dan V ialah satu ruang vektor dimensi terhingga. Teori ini dapat juga diaplikasi pada ruang dimensi tak terhingga.

Terdapat perbezaan penting di antara koordinat ruang-n Rn dengan ruang vektor dimensi terhingga V. Sementara Rn memiliki satu asas piawai {e1, e2, …, en}, satu ruang vektor V secara tipikalnya tidak dilengkapi dengan asas dan banyak asas yang berbeza wujud (walaupun kesemuanya mengandungi jumlah elemen yang sama dengan dimensi V). Dengan memiliki asas tertentu {v1, v2, …, vn} untuk V, sistem koordinat boleh dibina dalam V: vektor dengan koordinat (r1, r2, …, rn) ialah kombinasi linear

r 1 v 1 + r 2 v 2 + … + r n v n . {\displaystyle r_{1}v_{1}+r_{2}v_{2}+\ldots +r_{n}v_{n}.}

Keadaan yang v1, v2, …, vn merentangi V menjamin yang setiap vektor v boleh diberi koordinat, sementara ketakbersandaran linear v1, v2, …, vn menjamin yang koordinat-koordinat ini ditentukan dengan cara yang unik (i.e. terdapat hanya satu kombinasi linear bagi vektor asas yang sama dengan v). Dengan cara ini, apabila satu asas ruang vektor V pada F telah dipilih, V mungkin boleh ditentukan dengan koordinat ruang-n-space Fn. Di bawah penentuan ini, penambahan dan pendaraban skalar vektor-vektor dalam V adalah berpadanan dengan penambahan dan pendaraban skalar vektor koordinatnya dalam Fn. Selain itu, jika V dan W adalah ruang vektor n-dimensi dan m-dimensi pada F, dan asas bagi V dan asas bagi W telah ditetapkan, maka sebarang transformasi linear T: V → W boleh dikodkan oleh m × n matriks A dengan kemasukan dalam medan F, dipanggil matriks T berdasarkan asas-asas ini. Kesimpulannya, kajian transformasi linear yang ditakrifkan secara aksiomatik, boleh digantikan dengan kajian matriks, yang merupakan objek yang konkrit. Ini merupakan antara teknik utama dalam algebra linear.